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A Bond Graph Approach to the Modeling of 
General Multibody Dynamic Systems 

Whang Cho* 
(Received January 23, 1908) 

A vector bond approach which effectively leads to a compact form of Hamiltonian bond 

graph structure and naturally to Hamilton's equation of motion is proposed ['or the modeling of 

general multibody dynamic system. The methods [i"~r determining required bond graph elements 

are formulated in terms of  kinematic intluence coefficients. All moduli of transformers and their 

time rate of changes are found by pure vector (matrix) operations lbr the readiness for computer 

simulation of the resulting bond graph. 

Key W o r d s :  Bond Graph, KIC(Kinemat ic  Influence Coefficient) 

1. Introduction 

The visualization of the energetic structure of a 

dynamic system is very use|itl in various aspects 

of system engineering, e. g., system analysis, syn- 

thesis, and control. Since Paynter (1%0) first 

proposed the bond graph as a unified method of 

modeling physical systems in early sixties, bond 

graph approach has been known to be a conve- 

nient tool for the visualization of the energetic 

structure of a dynamic system. 

Its applications in various engineering disci- 

plines have been exponentially increased as being 

reflected in the literature reviewed by Bos and 

Breedveld (1985). But the conventional bond 

graph method, even with the po'~ser of visualizing 

energetic structure, does not provide a straight- 

lbrward way of dynamic modeling of a general 

multibody dynamic system. This is mainly 

because of the fact that as the number of bodies in 

a system increases, the detailed dynamic interac- 

tion structure of the system becomes quite compli- 

cated due to natural existence of many dependent 

inertial elements resulting from kinematic con- 

strainls involved in the system. 
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Some of the key elti)rts made to resolve this 

difficulty are as follows: Karnopp (1969) 

introduced an important concept of power conser- 

ving transformation into bond graph and helped 

Rosenberg (1972) to establish a foundation 

toward multiport mechanics. Utilizing general- 

ized coordinate, Brown (1972) proposed Lagran- 

gian bond graph which is direclly compatible 

with Lagrange's equation. Given a usual bond 

graph, Rosenberg (1977) devised, quite different- 

ly from Brown (1972), a new procedure of causal- 

ity assigmnent which facilitated finding state 

equation by using Lagrange's equation. Later, 

Rosenberg (1978) asserted the good aspect of the 

bond graph method in modeling multibody 

dynamic systems, recommended tlne usage of 

proper stiff'hess elements as a way of getting 

around the difficulties caused by dependent iner- 

tim elemertls, and incorporated the idea into 

Rosenberg and Margolis (1979). Allen and Dub- 

owsky (1977) were practically the first who 

aUempted to model a general muhibody system 

using bond graph. Allen (1979) (ormulated La- 

grange's equation from bond graph, and Allen 

(1981) also re(ormutated the dynamics of mecha- 

nisms in accelerating coordinate fi'ame by 

introducing comprehensive notation of velocities. 

By tollowing and expanding Allen's works, Bos 

and Tiernego (1985) and Tiernego and Bos 

(1985) developed a systematic algorithm for the 
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modeling and s imulat ion of a general intercon- 

nected muhibody  dynamic system. 

This  paper  also at tempts to formulate  

kinemalics and dynarnics of a general mult ibody 

dynamic system by using bond graph. The 

approach developed here may be considered to be 

dual  to the one used in Bos and Tiernego (1985) 

and Tiernego and Bos (1985) in a sense that in 

this pal:mr, rather than using accelerating frame, 

all the kinematic lbrmulat ions  are performed in 

inertial frame by using the concept of kinematic 

influence coef l ]c ient(KlC),  which was first 

introduced in dynamic system modeling by Paul 

(1975) and Benedict and Tesar (1978a, 1978b). 

Extension of the concepts was made in Thomas 

(1982), Cho et al. (1989), Cho (1994), and Paul 

(1989). Similarly to the concept of the first order 

KIC, Kane and Levinson (1985) defined the 

concept of the linear and angular  partial veloc- 

ities. In bond graph terminology, the first order 

KIC is equivalent  to the modulus  of a trans- 

former. 

This paper is organized as follows. In the fol- 

lowing :,ection, the kinematics of  a general con- 

strained mutt ibody system is briefly formulated in 

terms of  KIC. Full details can be found in Cho 

(1994). In Sec. 3, the hamil tonian  bond graph is 

developed, and finally concluding comment  

comes in Sec. 4. 

2. :Kinematics in Terms of  K1C 

2.1 Kinematic constraints 

Consider  a interconnected mul t ibody dynamic 

system which contains  several closed kinematic 

chains as shown in Fig. I Note in Fig. 1 that all 

the joints  are assumed to be simple ~ without loss 

of generality and numbered by using positive 

integers. The set of  jo int  indices used to index all 

the simple joints  in the system will be denoted by 

J,  i. e., ] = { j ~ :  j,  c Z "  with i---:1, --., J} where 

t A jolt1 is called simple if" it allows only one degree of 
freedom of relative molion Any compound joint like 
ball  and  sockel  j o in t  can  be mode led  by series o f  

s imple  jo ints .  

:~ In this paper ,  a bo ld  face letter denotes  a vector  expres-  

sed in co lun ln -  wi.,,e form. 

Fig. ! Conceptual interconnected multibody sys- 
tell1, 

Z + denoote the set of positive integers and J is 

the total number  of simple joints. 

A set of independent  holonomic  constraints in 

terms of proper Lagrangian coordinates q ; ~ R  J 

may be expressed in vector tbrm'-' as 

f (~/;)==0 (I) 

where f ; ( ; = ] ,  ..., M)  are at least twice differ- 

entiable functions w. r. t. (with respect to) ~ .  

Assuming the system possesses N degrees of flee- 

dora, ['q. (1) may be rewritten as 

f ( r  q ) = O  (2) 

where r  x' denotes the ( independent)  general- 

ized coordinate vector selected from gr and the 

vector qC-R M represents any dependent  redun- 

dant  set of coordinates involved in ~ / ~ s  such 

that J : - : N + M .  The selections of the vectors 

and q from Lagrangian coordinate vector gr may 

be formally described as (/~, ~ ( ~  with / - I, .-., 

N and q~ ::: ,7I[~c~. I with i I, .-., M where two 

index functions, p(i )  and s ( i )  are dl,q'ined as p 

( . )  : { I , - - . , N }  .... J a n d s ( .  ) : { I . . . - , M } - , J  
and their inverse relationships /)( �9 ) and ,s'( �9 ) 

are also defined as p(  �9 ) ' J  ,{1, ..-. :V} and,~. 

( . )  : j  ,{I , . . . ,  C:}. 
I)iflkrentiating Eq. (2) w. r. t. time and solving 

tor q lead to 

where [ ( ~ l t  )+r will be called the first order 

internal kinematic h]fluence coeff ic ient( lKlC)  

matrix and is defined as 
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where [3 f /aq]  is assumed to be nonsingular 

without loss of generality because proper selec- 

tion of generalized coordinates ~ and depen- 

dent coordinates q always ensures this condition 

due to the independence of the constraints given 

in Eq. (1). Note that the first order IKIC matrix 

is the power conserving transformation (Karnopp 

1969) between ~ and q with its dual form given 

by 

r~ = [ G] TVq (6) 

where T denotes matrix transpose, r,  and rq 
denote the generalized forces (or efforts) associat- 

ed with r and q, respectively. 

The second order rate relationship between q 

and ~b may be obtained by differentiating Eq. (3) 

w. r. t. time as 

q '=  [(~] 4"+ ~ r(~){/~}(~) ~ (7) 

where 

- ( a2q l / (8) 

l 
= L3q-J '"1, at, at, J- [ 0 . ]  T 

a f - 1 , ,  a~f 

- T O f  - 1  a~ f  

As used in Eqs. (7) and (9), in this paper the 

delimiter { - } denotes a three dimensional tensor 

and the operators @ and @ were introduced as a 

generalization of matrix multiplication rule for 

the expressional compactness and readiness for 

programming (refer to Appendix for definitions). 

As an example, a typical three dimensional tensor 

introduced in Eq. (9) is defined as 

[ a~f - (lO) l 32fk 
3q3r Jku 3q49c~j 

where indices k, i, and j denote the correspond- 

ing plane, row, and column, respectively. The 
three dimensional tensor { / ~ } ~ R  MxNxx will be 

referred to as the second order IKIC tensor of the 

system. As it will be shown later, the second order 

IKIC tensor facilitates evaluation of time rate of 

change of moduli of various transformers 

contained in the system. 

When the system is constrained by an indepen- 

dent set of nonholonomic constraints, a similar 

formulation is readily possible as shown in Cho 

(1994). 

2.2  T h e  f i r s t  o r d e r  k i n e m a t i c s  

Introducing the popular concept of virtual cut, 

an interconnected muhibody system can be made 

topologically equivalent to a kinematic tree 

(Huston and Passerello (1979)). Using the 

kinematic tree, link indices are assigned as fol- 

lows: First, the index 0 is assigned to an inertially 

fixed link. Then, the indices of the remaining 

links can be assigned in such way that they take 

the same indices as those of joints which initially 

meet the links along the path defined from link 0 

to links of interest. It is important, in this process 

of assigning link indices, to note that the imagi- 

nary massless links arising from modeling com- 

pound joints by a series of simple ones should 

also be assigned proper link indices. 

For easy references two additional sets of in- 

dices are defined as follows; the set of link indices 

V - { v , . :  v i ~ Z  with i =  1, ..., v} where Z 

denotes the set of nonnegative integers and V is 

the number of links, including imaginary massless 

links, involved in kinematic tree and the set of 

body indices W={w~ : w , E Z  with /=1 ,  ..., zv} 

where I47 is the number of physically existing 

bodies with finite mass contents. Notice that W G 

v2yu{0}. 
The basic convention for setting up local coor- 

dinate frames at link j is assumed as follows: 

x j -and  yFaxis  is defined fixed on link j, col- 

linear with the axis of rotation or direction of 

sliding depending on whether the joint j is 

revolute or prismatic, and x F a n d  yj-axis fixed in 

the link are properly selecled to lie in the plane 

perpendicular to aFaxis such that usual right 

-hand rule is satisfied. From now on, all the 

vectors which appear in equations will be 

assumed to be expressed w. r. t. the inertial coor- 

dinate frame fixed in body O. 
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2.2.1 The first order KIC for angular motion 

Collecting relative rotational motions between 

two neighboring links can be collected along 

appropriate kinematic tree by using the associated 

connection map, the absolute angular velocity of 

the link k can be expressed in a matrix form as 

oJ~ = [ G~I r (1 l) 

where u th column vector of [ G~] ~ R a• the first 

order (external) rotational KIC matrices associat- 

ed with the link k, is given by the weighted linear 

combination of & as 

[Grh],,=52aj{fl,8~(~)+ (1- /3j) [~;]s( i )n}zj  (12) 
j > 0  

where a~ equals I if joint  j is revolute or 0 if joint  

j is prismatic, By equals 1 if joint  j is independent 

or 0 if joint  j is dependent, and the Kronecker 

delta 8~(m equals 1 if j = p ( n )  or 0 if j=#p(n), 
and 8 [ ~ ]  s(j). denote s(j)th row and n t;' column 

element of the first order internal K1C matrix 

[ G ] ,  which is equal to 8q_suffad?~ as shown in 

Eq. (4). Note that the summation in Eq. (12) 

should he interpreted as being performed down- 

ward, starting from link k, along the kinematic 

tree until the inertially fixed link 0 is reached. 

Notice that Eq. (2) defines the power conserv- 

ing transformation associated with the rotational 

motion of link k. Its dual form may be given as 

r~ = [ G~] ~r~,~ (13) 

where :,%~ denotes the generalized force (or 

effort) vector related with pseudo-coordinate  wh. 

2.2.2 The first order KIC for translational 

motion 
Translational velocity of a point fixed in a 

body can be expressed in a matrix form. For 

example, the velocity of the center of mass of te ~h 
body is given by 

p ~ _ - [ G ,  ~ ] ~ (14) 

where the n ~h column of [ G t h ] c R  a-N, the first 

order (external) translational KIC matrice as- 

sociated with the the point of interest, is given by 

[ c ;  ~] :;~ = ~ ,  [ ( i  - a , )  { 5 , a ~ . )  
j > 0  

+ ( l  + fl~) [ O]~(~).}z~+ a//asak,,~ 
+ ( 1 - / 3 j ) [  (~] s(j).,}zj x ( P k - R , )  ] 

(15) 

where Rk denote the position vector of the origin 

of the local coordinate frame fixed in link k w. r. 

t. a reference coordinate frame fixed in link 0. 

Equa t i on~  (t4) also defines the power conserv- 

ing transformation for the translational motion of 

link k and its dual relation is 

r~ =: [ G?]  ' r ~  (16) 

where rp, denotes the generalized force (or effort) 

vector associated with the position vector Pk. 

2.3 The second order kinematics  

In tile bond graph modeling of general inter- 

connected multibody system, the inlbrmation on 

the time rate of change of moduli of various 

modulated transformers are required in the proc- 

ess of constructing state equation of the system. 

Theoretically, required results may be obtained 

either by direct symbolic differentiation of  moduli 

of modulated transformers found previously, or 

by using vector algebra. Here the latter approach 

is pursued for the sake of systmatic evaluation of 

them (Cho, 1994). 

To find d/ctt(IGrk]) in a proper form, notice 

that 

d ( [Gel :n)_ ~ a k �9 -- ~]=o-~b~ ([ GT] :n) q ~  (17) 
d t  = 

where in view of Eq. (12) 

+ (1-4- fl~) [ G]_s.)n}z,:J (is) 

= "~, 8 i 8zi 
~>, a,{ ~, ~(,) + (1 - fl,) [ G ]_~,,,n} i~r 

+ ~oa, ( I --  a,.) a~m ( [ 0]_s.,,,) zi (19) 

with 

' n  T ( i )  

3r (I g~)[G]su).,,zj• 

(20) 

where the mapping 7"( �9 ), which operates on the 

set of link indices u and fully characterizes the 

interconnection structure of links in a kinematic 

tree, is called connection map (Huston and Pas- 

serello, 1979), and 
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where {/~}su~,,,~ indicates the s ( i )  u' plane, ~/h 

row, and m u' co lumn element of the tensor {/t} 

defined in Eq. (8). Now, the se u' co lumn vector of  

d / U t ( i G i / ] )  may be expressed as 

H h ( ~ )  

where [{H~f},,:] ~17  :~''x' is the ,/~' phme of the 

tensor { H # } ~ t ?  N• called the second order 

rotat ional  KIC tensor. The sTz t*' co lumn vector of 

s/j' plane of the tensor {H$}, denoted by' lHSq I T i t ? i n ,  

is constructed by the linear combina t ion  of 

vectors as 

8 ([al'],,) (23) {H?},,:,, = o~,,, 
/e 7 0 )  

-- >2, y '  a~,z,{.e, ak~. ,+ ( I - -  ~,)L (~].,-,,,,,} 
i > 0 j > 0  

{~xS/;u,, + (1 - i7.,.) ! G ] .s<s,,,}zJ x z,. 

a,(1 /~,) {/t}~,,~mz,. (24) 
i > 0  

Finally,  d / d / ( ~ G $ ] )  ~ R  a• may be expressed 

in co lumn-wise  form as 

[G~ <1 =[ [ {H/<} , : : ]  ~ ]  [{/-/?}~] r  

s u , a  7 c J  (25) L l , t  r J N::J  

It can be proceeded similarly to find d / d l  

( IGI~]) in the fol lowing fbrm. 

//f([(;/q)],, I {n l<} , ,  ] r (26) 

where the second order translat ional  KIC tensor 

{H~ } ~ A  ) . . . . .  is formed by collecting vectors as 
shown in Cho (1994). Hence, ( ] / d l ( [ G - [ ] ) ~  
/(~,v may be expressed in column wise tbrm as 

[G~j- [ {HI} , : :  r  { H P } ~ ] r  
L 

[{H/q,v ] ~] .  (27) 

3. Hamiltonian Bond Graph 

3.1 Basic  s tructure  with pure interial  

e l e m e n t s  

The basic structure for Hami l ton ian  bond 

graph may be constrticted from pure inertial inter- 

Fig. 2 

/G// �9 
"~ M T F  P/ ", I ' m ,  

/c;;./ b: "" M T F  - -  I - [ I ']  

1 
. 

"~ 3 1 T F  1 m" 

fc~l 
"" M T F  1'2 ---, / . [ I " ]  

Bond graph of interconnected inertial sysiem. 

c o n n e c t e d  m u l t i b o d y  sys tem.  R e s u l t i n g  

Hamil lonian  bond graph structure serves as the 

backbone of the bond graph approach developed 

here. 

Figure 2 shows the convent ional  bond graph of" 

interconnected mul t ibody system, where only the 

inertial elements are included and other elements, 

e. g., compliance,  resistor, and gravity, etc., will 

be considered later. In the Fig. p~' and p )  fo r / eC  

W denote translat ional  (or linear) and rotational 

(or angular)  momenturn vectors, respectively, of 

/eu~ body with finite mass contents, m ~', I Ik]  

stands for mass moment of inertia of body i w. r. 

t. the inertial coordiante frame, and the super- 

script W denotes the total number  of bodies with 

finite mass contents. Note that modulated trans- 

formers (MTF)  are modulated by the signal 

vector of Lagrangian coordinate ~ ,  i. e., the 

generalized coordinate r and dependent coordi- 

nate q. 

Although not shown explicitly in Fig. 2, it is 

well known that generally not all inertial ele- 

ments are independent  in the sense of causality. If, 

by starting from an inertial element, the integral 

causalities are assigned in the convent ional  sense 

and propagated, the dependent  inertial elel-nents 

appear by coupl ing through the I junct ion  with 

common flow r In this process of assigning 

causalities, the moduli  of  modulated transformers 

must be taken into consideration.  This is because 

at given configurat ion of" the system, some of the 

moduli  determined by the signal vectors r and q 

may cause difficulty in expressing the states of 

dependent  inertial elements in terms o f i n d e p e n -  
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dent ones. 

A novel way of getting around this difficulty 

is to formulate in terms of the equivalent  (or 

effecti,,e) inertial field seen from 1 . junction of 

4- This approach, which natural ly leads to the 

Hamiltori ian bond graph, is attempted here. es 

<zN'v be the effort vector coming into the I 

-junction of ~ from inertial elements through 
MTF's .  Then,  by noting in Fig. 2 that i l l  and p*,' 

for /<,cS H" are the efforts signal related with iner- 

tial elements, it is easy to see that 

e,  ::  ,~, ,  , : ,  ( ,r (;t] '/i;' + ,r (; , , ]  , / i  ~) (2 s )  

where the summation is perlbrmed over the set of 

body, indices IlL Note that [ G i  <] and IG*'J~ are 

found previously as in Eq. (12) and (15), respec- 

tively. To find the equivalent irlertial field, rewrite 

Eq. (2:~)) 

d t 32, (I. (;"1 'Pr f [ ( n  I'Pg) t 
et d/ t,,~w J 

I ( ;~  , ;P~+ 4 [ (29) u r r  J l , * r ;  
te ~1 '  

where [Gp]  and [ t< G~! are given by Eq. (25) 

and (27), respectively. Let's define the general- 

ized nlolllentt~lna \ector p C  tc ''3 of the syslem as 

h l" te I r x h P ..... E ( G , ]  p ,  : LG, - ] 'p~ ) .  (301 

Now, not ing that 

p;' ; ; { ' [G [ ]  r (31) 

and 

F h g te q G,I p~::: i I  ] , j ,  (321 

the generalized momentum vector p may be re- 

written as 

[ I (; ,+ P: E (;;;"[a/<] ` ~"-' ~ " q ; [ / ; < ] '  "- " 
L h ~ it, 

..... [,r*i r (34 
where !/It.:  /~ ~'::x is the inertial field matrix of 

the systenl defined by 

I ! * ]  ..... E ( , , " l a l ' ] q  g l ' }  4 l a / < ! ' '  
h ~ H 

[#"] [. a,q)  (35> 

In terms of [1"] ,  the kinetic energy l i e  and 

kinetic coenergy KE* of an inertial system can be 

expressed as 

and 

I 
KE ~ p ' [  I * ]  ~p (36) 

K E * : :  I 2 ~ ' I I * ]  ~ (37) 

Note that the kinetic energy I(]:Z which is the 
integral of flow with respect to generalized 
n]omenlum, and the kinetic coenergy K E *  
defined by the integral of generalized momentum 
~ith respecl 1o I]o\~ are related by Legendre 
lransforrnation. 

Substituting Eqs. (3I) and (32) into Eq. (29) 
and usin 7 E% (34) lead successively to the fol- 
lowing i-elations. 

~{ m '< 7 U; ' ]  ' [  G I  <] ' ~"~' e; : 1") ..... ,,<~ 4 [ G~ ; 

(;,,, ] }] ~ (3s) ] lJ~'] [ 

(~,, ~ [ (,,, ]~"" p , .~ {~,,"[ (2 ' ] '  ""' * 

L I ' ] [ ( ; ,  f ] }  ! * ]  'P (39) 

o r  

p : : - e ,  t F ( ; R  [1"]  'p (40) 

where the maIiix [ GR! e_ l~ ~ ~'~ fbrms the gyris- 

tor field (Allen 1979) and is defined as 

I E l , / ' [  " ' r " " <  + [a / ' ! '  �9 t a R ]  : := ~ t  : t t T t  J 
[ 

I I " j l  a,'-'7 i ] (4~) 

Notice that elements ot" file gyrislor matrix IGR]  
{ire the function of r q, and ,~ (or the generalized 

momentum p) .  

Notice that Eq. (40) is, in Fact, the Hamihon ' s  

equat ion derived using bond graph. In view of 

Eq. (40) it may be observed that the total effect of  

the inertial elements of an interconnected 

mul t ibody system can be effectively modeled by 

using the equiwtlent inerlial field matrix [1"]  

defined w. r. t. the generalized flow vector ~ and 

agy r i s t o r t i e l d  matrix ( ; R ]  as shown in the Fig. 

3. Based on the developmenl so far a general 

interconnected mul t ibody system can be re- 

presented in the Hami l ton ian  bond graph as in 

Fig. 4 with natural causality assigned. In Fig. 4. 

(d represents the generalized el'lbrt vector caused 
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Fig. 3 

[I*] 

ej 
\ l Ion] 

Equivalent inertial field model. 

by both conservative and nonconservative force 
field as will be shown successively. Hence, the 
state equation of  the system can be written as 

/ i = - [ G R ( @ , q , p ) ] [ I * ( ~ , q ) ]  tp+Q (42) 
~ - - [ I * ( ~ , q ) ]  ~p (43) 

0 =  [ (~ (,/~, q)]  [1" (4 ,  q) l - to .  (44) 

Notice that the Eq. (44) is obtained from Eq. (3) 
where [ G ( @ , q ) ]  is given by Eq. (5) for 
holonomic case and should be included in the 
state equation in order to update the dependent 
coordinates q in time. 

To show that the same result can be obtained 
directly from Hamilton's equation, define the 
Lagrangian L and, by Legendre's transformation, 
the Hamiltonian H of the system as 

L = ~ r  [ I  * ] ~ (45) 

H = l / i r [ / * ] - ~ / i  (46) 

Then, the Hamilton's equation gives 

3 H  /i - ~ +  O (47) 

where Q ~ R  N denotes the generalized effort 
vector including conservative forces and 

3 H  _ 3 L  (48) 
a~ a~ 

-- J , ( l C r ~ , * ]  ~)  (49, 

In evaluating Eq. (49), many different schemes 
may be employed. One scheme defined below in 
Eq. (54), probably the simplest for the hand 
evaluation, yields 

a@ 
=[~R]~ (5~) 
= [ G~R] [ I * ]  - 'p (52) 

[I*]  

Se:  Q .  "~ 1 k - - [ eRl  

Fig. 4 Bond graph Representation of general 
multibody system. 

where another form of gyristor field matrix [ G~R] 
~ R  N• is produced in row vector form as 

r r[{P*)l::] 

Cr [{P*}2::] 

[GRI . . . .  (53) 

~  

~T[{p,]~::] 

with the three dimensional tensor [p*]  
N N•215 being defined as 

{P*}hi~ Z ( [ I * ]  ~). (54) 

It should be pointed out that, although as 
mentioned previously other forms of gyristor field 
matrix are possible depending on the method of 
evaluation of Eq. (49)), the net dynamic effects of 
the resulting gyristor are always the same. In 
other words, they produce the same effort vector 
in response to the input flow vector ~. In fact, it 
can be proved that although the gyristor obtained 
through direct bond graph manipulation as in Eq. 
(41) and the gyristor in Eq. (53) obtained from 
direct application of Hamilton's equation are 
generally different in their elements, the efforts 
they produce in response to flow ~ are the same, 
i. e., 

[ GR] ~ = [ G~R] ~ (55) 

3.2 Modeling of compliance element 
In Fig. 5 typical translational and rotational 
compliance elements are shown, in which /~  
denotes the translational or rotational stiffness of 
the i th linear spring, pc  ~i and p~" indicate position 
vectors of two ends of the spring represented w. r. 
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l:'ig. 5 Typical compliance element. 

t. inertially fixed coordinate, and 01' and Og ~ are 

assumed to represent angular displacements of 

two links to which i th rotational spring is 

attached Let q~,--~ 17:* be the relative displacement 
vector of the i th spring defined by 

2 i  l i  �9 q~= P c - - P c  translational (56) 
02! - 0~' " rotational 

= q,!.n~: (57) 

where q{ is the magnitude ofq[., i. e. ,  II qgll and the 

unit vector n ~ / ?  :~ is defined by 

n~:-- q~/q[,. (58) 

Let the constant q{O be the free translational or 

rotational displacement of the i ~h spring. Them 

the generalized effort vector from compliance 

elements, coming into the l- junction of r denot- 

ed by e c ~ R  N, may be found as 

K 

e c -  -- ~. A~. [ G~:] ~Jq~, (59) 
i - - I  

where the net displacement vector Aq[-~/~r3 of the 

i th spring is defined by 

~ -  "c ' ,0, n" (60) ~ q c - -  t ' lc-- qc ) c 

and the matrix [ (~]  ( - t r  ~ u  of the required trans- 

former, whose elements are in general the func- 

tions of ~b and q, may be found by 

[ d4] =: aq~, (61) 
3r 

t (Pc  - p ~ i ) / 3 ~  �9 trans- 3(Pi ' , " -  P~O / 3 ~ -  3 ~ 
lational 

= 3 ( 0 2 ,  O l i ) / 3 ~ _ _ a ( , o ~ ! _ , o ~ , , ) / 3 ( ~  �9 

rotational. 
(62) 

Notice that 3P~"/3~ for j =  1, 2, are the trans- 

lational KIC of the end points of the i u' spring, 

which cain be expressed in the same form as in Eq. 

(15) and 3oj~/3~ for j =  I, 2 are the rotational 

KIC, also expressible in the form of Eq. (12), of 

the links to which each end point of i "  rotational 
A 

spring is attached. Now noting also that [G~]may 

also be expressed in column-wise form as 

i i "1 i =,- [ Sqc ,.+ ,-3n ic 3qc~,  § ~cnc 
[ r  - - [  c~i~f c q ~ 3 d  i br "< q ' ~ 7  : "" i 

3q~. i - -  ,. 3n~c ] (63) 

and the fact that the scalar product of two vectors, 
i 3 n c / 3 r  and n~:, vanishes for i = l ,  ..-, N,  the 

expression in Eq. (59) may be rewritten as 

K 
i T t ec : - Z K,. [ Gc] Aq~ (64) 

i = [  

where the new modulus matrix [G~';]~N 3• is 

deft ned as 

[~q~ , 3 d n ,  3q~ ,] (65) [ (;~:] = Lar n~ ~ 3r <: i ... i g c ~ n c j  

3Aq:I, (66) 
3r 

z by eliminating 3m:/3r component in columns of 

the malrix [(~{]. 

Notice that ahhough Eqs. (59) and (64) pro- 

vides the same information about the effort vector 

due to compliance elements in the system and can 

be substituted into Q in Eq. (42). In ['act every 

time varying quantity in Eqs. (59) arid (64) may 

generally be expressed as a function of ~ and q, 

which are the states of the system as in Eqs. (43) 

and (44). For example, Eq. (64) may be written 

with explicit functional dependencies indicated as 

K 

- i Aq~(r q). (67) 

Another view of linear compliance elements 

with nonlinear geometry may be given by observ- 

ing their local behavior around a given system 

configuration defined by ~b and q. Let [[K(~b, 

q)]C~/,! N• be the local stiffness reflected at 1 

- junction of ~ at given ~b and q. Then, 

3ec (68) 
[K]  . . . . .  30 

= G/:] K,. ~-i+ .: A~(Aq[) 7 

.,f 31 G2:] ]] (69) 

[. ~,K,[  Cclir [Gc]]" + [ ~,K,. (Aqc)" " 
i =  J l i - 1  
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a E G;:] ~{ ~ } ]  (7o) 

where the three dimensional tensor {3[ G~':]/3r 

N N•215 is defined by 

[acJ/ 
~ ) r  j ,.,, =7~57 ( [ G;:] ,~,) (71) 

and can also be expressed by using the second 

order KIC tensors. Equation (70) shows that 

[K~ consists of two matrices. The first stiffness 

matrix is usually called the equivalent stiff)less 

matrix reflected through the transformer with 

modulus EGg;l, and the second is caused by the 

spring forces at given configuration, i. e., preload- 

ing forces, and nonlinear geometry involved in 

transformers. The latter stiffness effect can be 

called an antagonistic stiffness because it may 

exist in any redundantly actuated system, i. e., the 

system with larger number of independent effort 

sources than its kinematic degrees of fl-eedom. 

5.3 Modeling of resistive element 

Linear translational and rotational resistance 

elements are shown in Fig. 6, in which /r denotes 

translational or rotational damping coefficient. 

Let eRdA 'x be the ef|i)rt vector coming into 1 

-junction of r Then, 

e.  = 1~ [ a,;] ~/e< I a~] r (72) 
z = l  

where/r is the total number of resistance elements 

in the system and IG,41 is the modulus matrix of 

the transformer between the i th resistance element 

and the I junction of 4, which can be easily, 

determined by using the first order KI( '  matrices 

similar to the case of compliance elements. In 

terms of the equivalent resistance field matrix, Eq. 

(72) may be rewritten as 

e . =  [R] r (73) 

where the equivalent resistance field matrix [R 

( r  ''• is defined as 

R 

JR(C, q ) ] - -  ZR, . [G/e ]" [G~] .  (74) 
i = 1  

5.4 Modeling of gravitational effort source 

elements 

To complete the modeling of an interconnected 

Fig. 6 Typical resistive element. 

multibody system, the gravitational forces must be 

included. Let the effort vector reflected to the 1 

-junction of r due to gravity be es. Then, eG 

may be expressed as 

n 

eG ~. J~z,. E G/] ~g, (75) 
t = l  

where - G / ] c A  ':~'x is the modulus matrix of the 

i e*' inertial  element, which can be found by 

exactly the same way as in Eq. (15), and g ,C  

lr is the gra'vitational acceleration vector of the 

i t'* inertial element expressed w. r. t. the inertial 

coordinate frame. 

6. C o n c l u s i o n  

In this paper, a systematic procedure for model- 

ing of general interconnected muhibody dynamic 

system was developed in bond graph environ- 

ments. The final state equation is given in Eqs. 

(42) through (44). In Eq. (42), tile total general- 

ized effort vector () is determined as 

(_J- Q* ~ e<: + e~, i e<, (76) 

where the efforts vectors ec, ex and ev are 

defined respectively in Eq. (59)(or (64), (72), 

and (75), and the vector Q*cE/~ v denotes the 

equivalent efl\)rt reflected from other effort 

sources which might exist in the system. 

Several features of the proposed approach are 

listed :is follows: First, the formulation started 

from tile bond graph structure proposed by 

Rosenberg (1972), which seems to be the stan- 

dard as in Karnopp el al. (1990). This structure 

has a distinct advantage of systematically visualiz- 

ing interconnection structure of inertial elements 

through generalized coordinates in a compact 

lbrmat. Second, although the structure of the final 

bond graph can be given by an extremely simple 
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Hamihonian form similar to the one given in 

Allen (1979) and Bos and Tiernego (1985), the 

details of the energetic structure of the system can 

be shown whenever necessary. Third, all modulat- 

ed transformers and their time rate of changes are 

found by pure vector (matrix) operations. This 

implies the readiness for computer simulation of 

the resuhing bond graph. 
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Appendix 

Algebraic definitions of the operators :~ and O 

are provided as follows: Given a matrix [ A I c  

t,~" t: and tensor {B}c-:N '~ ....... , new tensor { C } c  

N' ......... is formed by Jr operations as 

{ C},: ::  [A] ~:'+ {B} (77) 

_ h [ ~ A ] , , { B } j  (78) 
j =  1 

Basically, + operation makes each plane of 

tensor [B] uniformly scaled by the low element 

of [A] and then summed. Note that {B}:~ [A},: is 

not defined. 

The operation Q) is the extension of usual 

matrix multiplication rule to three dimensional 

tensor. Typical examples are as follows. A three 

dimensional quadratic operation is defined for a 

vector b c R  ' '  and the three dimensional tensor 

{B}~_R k~'*' '  to yield another vector a ~ / r  k as 

a = bT@{B}Q:)b (79) 

"bT{B},<: b "  

Multiplication of a matrix [ A i ~ l q  ..... and a 

tensor { B } ~ R  *~'<'*~ yields a tensor { C } c R  ~ ..... l 

a s  

{ C},.:- [A](:){B} (81) 
- [A] { B } ,  (82) 

Similarly {B}(~'){A} is defined with [AI~:_R m• 

and {B}~:R k ...... as 

{ C},.-- {B}r'~[A ] (83) 

= { B } ,  [A] (84) 

where {C} becomes k •  n •  l tensor. No @ opera- 

tion is defined on any pair of three dimensional 

t e n s o r s .  
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